Towards a Generalized Map Algebra: Principles and Data Types
نویسندگان
چکیده
Map Algebra is a collection of functions for handling continuous spatial data, which allows modeling of different problems and getting new information from the existing data. There is an established set of map algebra functions in the GIS literature, originally proposed by Dana Tomlin. However, the question whether his proposal is complete is still an open problem in GIScience. This paper describes the design of a map algebra that generalizes Tomlin’s map algebra by incorporating topological and directional spatial predicates. Our proposal enables operations that are not directly expressible by Tomlin’s proposal. One of the important results of our paper is to show that Tomlin’s Map Algebra can be defined as an application of topological predicates to coverages. This paper points to a convergence between these two approaches and shows that it is possible to develop a foundational theory for GIScience where topological predicates are the heart of both object-based algebras and field-based algebras.
منابع مشابه
Generalized sigma-derivation on Banach algebras
Let $mathcal{A}$ be a Banach algebra and $mathcal{M}$ be a Banach $mathcal{A}$-bimodule. We say that a linear mapping $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{A} rightarrow mathcal{M}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{A}$. Giving some facts concerning general...
متن کامل$gamma_{_mu}$-Lindel"{o}f generalized topological spaces
In this paper we have introduced new types of sets termed as $omega_{_{gamma_{_mu}}}$-open sets with the help of an operation and a generalized topology. We have also defined a notion of $gamma_{_mu}$-Lindel"{o}f spaces and discussed some of its basic properties.
متن کاملGeneralized states on EQ-algebras
In this paper, we introduce a notion of generalized states from an EQ-algebra E1 to another EQ-algebra E2, which is a generalization of internal states (or state operators) on an EQ-algebra E. Also we give a type of special generalized state from an EQ-algebra E1 to E1, called generalized internal states (or GI-state). Then we give some examples and basic properties of generalized (internal) st...
متن کاملar X iv : m at h / 99 02 14 1 v 1 [ m at h . Q A ] 2 4 Fe b 19 99 Braided Oscillators
A generalized oscillator algebra is proposed and the braided Hopf algebra structure for this generalized oscillator is investigated. Using the solutions for the braided Hopf algebra structure, two types of braided Fibonacci oscillators are introduced. This leads to two types of braided Biedenharn-Macfarlane oscillators as special cases of the Fibonacci oscillators. We also find the braided Hopf...
متن کاملSolving fractional evolution problem in Colombeau algebra by mean generalized fixed point
The present paper is devoted to the existence and uniqueness result of the fractional evolution equation $D^{q}_c u(t)=g(t,u(t))=Au(t)+f(t)$ for the real $qin (0,1)$ with the initial value $u(0)=u_{0}intilde{R}$, where $tilde{R}$ is the set of all generalized real numbers and $A$ is an operator defined from $mathcal G$ into itself. Here the Caputo fractional derivative $D^{q}_c$ is used i...
متن کامل